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Extended Abstract 
 

Simulation techniques1 are a powerful tool to study the nature and behaviour of 
complex interactive systems, whether they are weather systems, mechanical 
structures, etc, or systems that involve humans e.g. social systems, organiz-
ations. As interactions between agents presuppose the existence of events that 
can be observed by these agents and actions that can be executed by such 
agents, describing these agents in Boolean mathematics as sets of  ‘IF {event} 
THEN {action}’ type of rules might be an adequate way to express agent 
behaviour in mathematical terms, in order to understand their micro behaviour, 
and simulate their behaviour in system models. However, there is a clear 
difference between a simple doorbell (“IF {button} THEN {ring} ) and ‘higher-level’ 
agents (ultimately animals and humans) that can only be described in much more 
complicated rule sets.  
 This paper explores the possibilities of capturing this wide range of agents 
into one descriptive model. As a first step we prove that all possible event-action 
repertoires can be described in Boolean mathematics. Having done that, we 
develop the concept of generic agent classes by adding capability classes. The 
resulting five agent classes aim to cover the full range of possible agents from 
the simple doorbell up till and including the organisational behaviour of humans 
in interactive systems.  
 In the last section of the paper we aim to understand learning, individual as 
well as collective, in the context of these agent. 

                                                 
1 Simulation techniques are becoming more and more important in studying the behaviour of 
interactive dynamic systems. In building understanding the often complex behavioural 
phenomena statistical methods, nor formal mathematical formulations prove, in many cases to be 
inadequate tools. Statistical methods fall short as the aggregated individual agents behaviour is 
not necessarily based on underlying grouping of agents and their characteristics, making (in such 
cases) notions as “mean”, “standard-deviation”, etc irrelevant expression. On the other hand (time 
dynamic, non-lineair) mathematics rapidly lead to a level of formula complexity that they are only 
useful in very stylized and simplified systems. Let, as in interactive systems, system behaviour is 
linked to, highly non-linear, interactions between system agents (Lorenz’ butterfly causing 
hurricanes), such simplifications might well (and unknowingly) destroy the relevance of the 
simplified model for the more complicate real world.   



 

Introduction and Scope 
 

There are different ways to describe a system. A system being a collection of 
entities (called ‘agents’) of some kind, interacting with each other and with some 
type of environment. The environment encompasses everything that is not part of 
the system. For many of such systems one can describe the behaviour in e.g. 
mathematical terms: A function that relates the system output (that’s what is 
‘given to’ or can be observed by the environment) to the system input (that’s what 
the system ‘takes’ or observes from the environment). Whereas such mathe-
matical description of behaviour might prove to be highly practical, it is not the 
system, nor does it say much about how the system actually works. Even in case 
the agents comprising the system would have some form of consciousness what-
ever that may be, it is highly likely that they might not even be aware of the 
existence of such input/output relation of the system as a whole.  
 Let’s consider a collection of birds flying in a flock. There are several mathe-
matical descriptions that can turn a simulated collection of birds on a computer 
screen into a flock. Yet it is highly unlikely that birds know anything about flocks, 
or that they intent to create one. This brings us to another issue. Whereas we 
can define the flock as a system, we could also see the individual bird as a 
system, the brain of this bird, or the nerve-cell in this brain, etc. Describing sys-
tems in agent terms inevitably leads us into a seemingly endless nested struc-
ture, almost fractal, of systems and subsystems. At any level we could define 
agents and interactions. It is there-fore required to choose a level of observation. 
For this article we will consider systems to be networked agents at the level of 
‘things’ or species e.g. birds, ants, computers, people, cars, etc. Anything below 
that level of granulation is considered to be part of the agent, not the agent itself. 
 Another way of describing system behaviour is to model the behaviour of the 
individual entities and their interaction. By simulating the system e.g. in a com-
puter model where these agents interact, the system behaviour will emerge from 
this interaction, and the set of agent- and interaction characteristics can be seen 
as a description of the system. Yet again, it is very speculative whether such a 
description of the system is the system. If we were for example to describe the 
interaction and cooperation between ants in an ant-nest in their quest for food, 
we know that three basic rules describing agent behaviour will convincingly re-
produce the observed behaviour. That doesn’t mean that ant’s ‘think’ according 
to the rules of the simulation. We just have no way of knowing that. The rules 
describe the system just like a mathematical formulation of the system function 
does.  
 However, such agent based descriptions might tell us a lot more about the 
working of the system than a mathematical formulation of the system function. 
Yet, as system behaviour is an emergent property of the interactions of the sys-
tem, understanding: Why does the system what is does, in many cases might 
prove to be highly complex. And that’s exactly the strength of agent based 
descriptions. It enables us to understand interactions between entities in a sys-
tem and the behaviour of the system as a whole, even when this behaviour is 
highly non-linear, complex and dynamic. By understanding such systems we 
might be able to design purposeful systems that can be deployed to make useful 
contributions to its environment.  
This article pursues the ‘agent’ component of such systems. It aims to classify 
agents in classes that have distinct properties with respect to the ‘capabilities’ of 



 

such agents to relate input and output. 
 

Rules and Rule-Based Systems 
 

Above, we described agents as entities that can ‘observe’ some kind of input, 
and can ‘create’ some kind of output.  For the scope of this article we will call the 
input ‘event’ and the output ‘action’. This means that entities that can neither are 
not considered to be agents. But what about agents that can only do one of both 
(single side agents)? Agents that can observe events, but cannot create actions 
are clearly not of any use as they cannot contribute to the behaviour of the 
system. They might be there, but are of no interest. The other type: Output with-
out input is an interesting one. Let’s for the moment assume that such agent 
could exist. Clearly, it can affect the system behaviour by its actions, so it should 
be part of our considerations. The question arises whether such an agent is 
conceivable for any useful system (it could obviously be programmed). We will 
come back to this issue later on. 
 Let’s for the moment limit our attention to agents that can both observe 
events and create actions. That also implies some relation between events and 
actions. In case this relation doesn’t exist we have the equivalent of a single side 
agent described above. We can describe relations between events and actions in 
Boolean structures of the nature: 
 

IF {f[eventi]} THEN {g[actionj]} 
 
In which f is a Boolean function of the set of possible events and g is a Boolean 
function of the set of possible actions. A large set of such relations could exist for 
a single agent. If we presume that event and action are binary and that an agent 
has just one input, only two such rules could exist: 
 

Input: 0 -> output: 1 (if event is not there, the agent undertakes the action) 
Input: 1 -> output: 1 (if event is there, the agent undertakes the action) 

 
If the agent takes no action then the rule is meaningless for the system as such.  
With more inputs and outputs, the set of possible rules expands rapidly. Again, 
based on a binary input and output structure: with 2 inputs and outputs we have 
4 separate input conditions, and 3 possible output conditions (1,1; 1,0, 0,1), 
which potentially gives us 12 rules. Three inputs and three outputs sums up to 8 
x 7 = 56 possible rules, etc.  
 Now the question arises whether we can consider all inputs and outputs to be 
binary. This is obviously not necessarily the case for real systems. However, we 
can always describe non binary inputs and outputs in a binary way (e.g. 15 = 
1111). Hence by increasing the number of inputs and outputs to 4 we can take 
care of all numerical inputs between 0 and 15. In other words, all non binary 
inputs and outputs can be expressed in Boolean terms, and hence the behaviour 
can be expressed in Boolean rule sets. 
 From the above, one important conclusions can be drawn: All agents defined 
in terms of observable events (inputs) and possible actions (outputs) can be des-
cribed in Boolean terms. This implies that all interactive agent systems can 
potentially be described as a (Boolean) rule-based system, and all inputs and 
outputs as collections of binary events and actions. Hence by choosing this 
descriptive method no potential system is excluded. 



 

Agent Classes 
 

Having established an adequate tool for the description of agents, the question 
arises whether classes of agents that share certain characteristics in terms of the 
Boolean structure can be defined.  
 For the purpose of illustration we will use a rather peculiar version of a 
vacuum cleaner. As a starting point let’s consider the type of automatic vacuum 
cleaners currently produced by the likes of Philips, Electrolux, etc. The machine 
moves itself around while sucking up dust on its path. For this movement, the 
machine has a set of wheels, an electromotor that drives the wheels, and (here 
we change the industrial product a bit) a mechanism that picks up batteries to 
power the electromotor, and some device to change direction of movement. For 
now, we use a very simple device: if the machine bumps into an object, it will 
move in a new, non-specific direction, 
 

IF {obstacle} THEN {change direction} 
 
and by that scan the surface and clean it. In order to sustain its existence as a 
working vacuum cleaner, the machine will require a new battery every once in a 
while.  
 Let’s assume that the vacuum cleaner has the capability (action) to pick up 
batteries scattered in the machine’s working area (input).  Now and then the 
machine will bounce into one of the batteries while moving around. We could ad 
a rule like: 

IF {battery} THEN {pick up} 
 
This set of rules would constitute a viable agent, interacting with its environment. 
It would work and keep working under certain conditions with respect to its en-
vironment. The statistical chance of hitting a battery must be big enough to pre-
vent exhaustion of energy, hence requiring a sufficient number of these batteries 
in the space. But when this condition is satisfied, our vacuum cleaner would not 
require any knowledge of its environment, nor of its own internal needs, to per-
form its function indefinitely. 
 We define this type of agent, with just inputs and outputs, as a Level-1 agent. 

 

 

Events Actions

IF {f[event ]} THEN {g[action ]}i j

 
Figure 1: Level-1 Agent 

 
The interesting thing is that already quite complicated systems can be modelled 
by means of such simple agents. The ant-nest referred to above, as well as 
models for birds flying in a flock can be adequately described using only Level-1 
agents. E.g., if we allow the machine to store excess batteries and discharge 
them in front of inactive machines that our machine bumps into, we could model 



 

entire ecological systems. We could for example model the oscillations of a fish 
stock in a lake given a specific amount of food. For our vacuum cleaners it would 
require the expansion of the ‘Bump’ rule with: 
 

• a new rule: IF {bump AND object = stalled machine} THEN {offload spare battery} 
• a device that can signal “Stalled” to the outside world (e.g. a defined sound) 
• a sensor identifying the obstacle as a stalled machine (pick up the “stalled” sound  
• a device that can dump the spare battery 

 
The problem, however, with our LEVEL-1 machine is that it changes battery each 
time it hits a new battery, also when it has already a fully charged one. In our 
multi-machine setup this might be useful in order to provide batteries to ‘stalled’ 
colleagues, but if they all do that repeatedly, time and energy is wasted on 
changing good batteries. 
 To solve this problem we could add a timer. Let’s assume that a battery lasts 
at least Tt minutes. This means that every battery it hits within this time could be 
neglected. So hitting a new battery after T0+Tt (T0 being the last battery change) 
causes a battery change. This implies the existence of some form of memory. 
The simple Level-1 agent doesn’t have this capability. So let’s define a Level-2 
agent. This class of agent has all the capabilities  of the Level-1 agent plus the 
capability of memorizing inputs and a notion of time, and with that a notion of 
history.  

Events Actions

Memory

IF {f[event (t)]} THEN {g[action (t+ t)]} i j ∆  
Figure 2: Level-2 Agent 

 
The way to cope with this time delay in our Boolean notation is to add the 
time(shift) to the formula expression: 
 

IF {f[eventi(t)]} THEN {g[(ectionj(t+�t)]} 
 
With this new capability, we could e.g. add a rule like: 
 

IF {new battery picked up} THEN {Pick up new battery in 1 hour} 
 
The internal memory counts time-clicks (time is an external event) until 1 hour is 
passed and enables the pick up mechanism again. At any moment in time, the 
machine now knows how long it can drive before it needs a new battery by 
comparing Tt with the current time lapsed since battery change. 
 With that information, we can now enhance the probability of survival of the 
vacuum cleaner considerably by adding a sensory mechanism that can pick up 
the scent of environmental batteries. Normally the vacuum cleaner will change 
direction at certain intervals. This is, however, not particularly clever if the 
machine is in the vicinity of a battery. Thus, if the machine picks up the scent of a 
battery and it needs a new one, it should start steering towards the battery 



 

detected. If more environmental batteries are available, it could steer towards the 
only one it can reach in time that is before his current battery passes out.  
 The sensory mechanism to do this is more complicated than the previous 
sensors with which our machine was fitted. A simple way of making such sensory 
system would be to have all new batteries in the environment fitted with a top 
light, radiating all around. If our vacuum cleaner has a rotating scanner on top 
that scans the environment for these lights it can work out relative direction (the 
angle of the scanner when it picks up the light) and the distance as the light 
intensity diminishes with the third power of distance. The rule to be added could 
then be something like: 
 

IF {closest battery < 0.9 remaining distance}  
THEN { Direction = angle(closest battery)} 

 
leaving a 10% safety margin in distance2. 
 Level-1 and Level-2 agents are passive, in the sense that they just respond to 
the outside events. They are, however, active in moving around. And in moving 
around in order to get energy from the environment, the machines already dis-
play intentionality, but they do not display a specific purpose, aspiration, or in-
tention. They are just there to serve the environment. We just assume that all the 
ingredients to perform their function are there. In the case of our vacuum cleaner 
the availability of sufficient new batteries scattered over the space.  
 So let’s make another step in sophistication. If we add an environmental map, 
remembering the inputs form or rotating scanner, the machine knows where the 
batteries are in general, and it also remembers what areas it has cleaned al-
ready. We could then have it, by some more or less clever algorithm which path 
through the space would create maximum cleaning for minimum time (or, equi-
valent, energy). The interesting thing is that now the machine will change direct-
ion, not in response to an external event, but as a result of an aspired perfor-
mance. And if the environment changes e.g. batteries are appearing and dis-
appearing randomly at a certain pace it can take action, preceding the ‘need new 
battery event’.  Rather than a notion of a past, this capability rests on a notion of 
a future.  
 So let’s define another class of agents, which we will call Level-3 agents. 
What is required for such agents is not memory (representing the past) but a 
notion of future (knowing that it will die in the future if it doesn’t recharge). The 
new element isn’t just that notion of future. In other words it needs the ability to 
‘anticipate’, and hence requires some form of model of the environment.  
How could this ‘anticipation’ be treated in our Boolean system? If we were to 
treat the recharge as an event, which it is, then the Boolean taken the 
expression: 

IF { f[Eventi(t)]} THEN {g[(Actionj(t-�t, t+�t )]} 
 
expresses the fact that the event comes after the action. Mathematically this is a 

                                                 
2 An interesting question now arises. If we were to see these machines act, it as if the display intent when they decide to 
head for the new battery.  However, the intend is not a property of the machine, its merely the programmers hand that has 
put this necessity in place. The machine is hence executing an intention that is external to it. Phenomenologically however 
it will be difficult to impossible to distinct this from a situation in which the intend is internal to the machine (leaving aside 
what mechanism would yield this intent). At this level of agent, the machine does not have the capabilities yet to behave 
intentionally, and some other capabilities are required in order to achieve this.  Below we will discuss intentionality 
extensively below. 
 



 

nice mirroring of our expression for Level-2 agents. 
 

IF  {  f [E v e n t i( t) ]}  T H E N  { g [(A c tio n j( t -∆ t ,  t+  ∆ t ) ]}

E v e n ts A c tio n s

M e m o ry

E n v iro n m e n ta l
M o d e l

IF  {  f [E v e n t i( t) ]}  T H E N  { g [(A c tio n j( t -∆ t ,  t+  ∆ t ) ]}

E v e n ts A c tio n s

M e m o ry

E n v iro n m e n ta l
M o d e l

E v e n ts A c tio n s

M e m o ry

E n v iro n m e n ta l
M o d e l

 
Figure 3: Level-3 agent 

This type of agent gets close to behaviour of living agents and systems at a fairly 
high level of development, reptiles for example. Flowers growing towards the 
sun, trees growing roots, foxes searching for rabbits, they all anticipate (if they 
didn’t they would have died before the action could take place). This is not 
surprising. As life is a continuous export of entropy from the system to the 
environment, it requires a lasting flux of energy into the system. That energy has 
to be found in the environment, and finding it requires some form of model of that 
environment, however simple. 
 Yet, as in our vacuum cleaner the needs are cast by the hands of the 
designer we still cannot say that our vacuum cleaner expresses “intention. 
Apparently, intention requires yet something else. Apart from the ability to 
anticipate and some model of the environment to link event en action, intention 
suggests some form of autonomy of the agents. And clearly this autonomy is 
lacking in our, by now rather clever, vacuum cleaner.  
 

Authors’ Full Coordinates 
 

Ton van Asseldonk 
TVA Developments BV 
Postbus 387 
5500 AJ  Veldhoven 
The Netherlands 
Voice: +31 40 230 01 00 
Fax: +31 40 230 02 00 
E-mail: tva@tva.nl 
Internet: http://www.tva.nl 
 
& 
 
Ole Elstrup Rasmussen 
University of Copenhagen 
Department of Psychology 
Njalsgade 88 
DK-2300 Copenhagen S 
Denmark 
Voice: +45 353 24 810 
Fax: +45 353 24 802 
E-mail: ole.elstrup@psy.ku.dk 
 

******* 


